Genetic algorithms Holland [31] and Goldberg [32], powerful tools based on biological mechanisms and natural selection theory, have received considerable attention regarding its potential as an optimization technique for complex problems
نویسنده
چکیده
Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm. Keywords—Artificial Immune System, Clonal Selection, Flow-shop Scheduling Problems, Co-evolutional strategy
منابع مشابه
Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملA Survey of Constraint HandlingTechniques in
One of the major components of any evolutionary system is the evaluation function. Evaluation functions are used to assign a quality measure for individuals in a population. Whereas evolutionary computation techniques assume the existence of an (eecient) evaluation function for feasible individuals, there is no uniform methodology for handling (i.e., evaluating) unfeasible ones. The simplest ap...
متن کاملA genetic algorithm to build diatomic potentials
Through the last years, several types of numerical and combinatorial optimization algorithms have been used as useful tools to minimize functional forms. Generally, when those forms are non-linear or occur in problems without a specific optimization method, stochastic methods based on search algorithms have shown good results due to its smaller susceptibility to be trapped in a local minimum. B...
متن کاملApplication of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012